Letter From the Director

Prof. Mario Jurić

Welcome to the first edition of DiRAC’s newsletter in 2024! As we kick off the Spring quarter, we’re excited to share updates highlighting the achievements and outreach efforts of our outstanding team members. These include an announcement of discoveries of numerous active asteroids by thousands of citizen scientists led by Colin Chandler (LINCC postdoctoral scientist at DiRAC), a new paper by J-F Crenshaw (graduate student at DiRAC) describing how AI can be used to control the shape of telescope mirrors and increase its effective resolution, and a recognition with the Buchalter Prize of a novel space-measurement technique devised by Kyle Boone (fmr. DiRAC Fellow) and Matt McQuinn (UW Astronomy Professor).

Your support is what makes work like this, and the education that precedes it, possible at DiRAC. In just a few days, on April 4th, we invite you to support DiRAC’s student-focused research program on Husky Giving Day. Additionally, mark your calendar for June 12th, when you’ll have another chance to engage with UW astronomers at the DiRAC Planetarium Experience. Our researchers will share some of the recent discoveries, and update us on the first images we expect from the Rubin Observatory later in the summer. Then join us for a behind-the-scenes tour of the labs, usually hidden from the public eye, where we explore the mysteries of comet dust.

This season, we’ve had no shortage of discoveries and awards – delve into the articles here for more details. We hope you enjoy reading about them and feel inspired to join us in person at the next DiRAC event.

Thank you,

Mario Juric
Director, DiRAC Institute
Professor, Department of Astronomy

Support Astronomy students on Husky Giving Day 2024

Your contribution on Husky Giving Day is a catalyst for a student-centered initiative led by DiRAC and the Department of Astronomy! Make a gift today!

The “Summer Research Prize” program bridges the gap between enthusiastic undergraduate students and dedicated faculty researchers. This collaboration cultivates innovation, allowing them to work together on cutting-edge projects that span the vast and fascinating field of astronomy.

Programs like this accelerate and deepen student research engagement, particularly for those from non-traditional pathways. Your support makes our outreach, education, and fundamental research possible. Thank you for playing a crucial role in our journey!

We are excited to sustain and expand this program, and it’s your continued support that fuels its success.

Katelyn Ebert (Advisor: Prof. Matt McQuinn): Precision Measurement of the Hubble Constant with Fast Radio Bursts

“The Summer Research Prize was pivotal in facilitating my student’s research over the summer, which laid the foundation for an innovative space telescope concept now supported by NASA for further exploration.”

Prof. Matthew J McQuinn, Advisor 2023
Benjamin Herrera, Bowang Lan, John Delker, Celeste Hagee, Katelyn Ebert, and Andy Tzanidakis 
 

“The Husky Giving Day is momentous for our UW Astronomy community as it provides the means for us to make profound discoveries about our universe at the DiRAC institute”

Andy Tzanidakis, Mentor 2023

Read more about 2023 Summer Prize Awards here.

Using AI for Wave-front Estimation with the Rubin Observatory Active Optics System

The Rubin Observatory will use a sophisticated auto-focus system (i.e., active optics) to enable the fast cadence and high image quality required for its groundbreaking ten year survey of the southern sky.

This system must operate with higher speed and deliver higher precision than what has been necessary for previous wide-field surveys which limits the applicability of existing state-of-the-art active optics algorithms. In this work we design a new algorithm which uses artificial intelligence (AI) to accelerate and increase the predictive power of the active optics system in a wide variety of observing conditions which the Rubin Observatory will face

John Franklin Crenshaw is a 5th year PhD student in the Physics Department.

He works with Professor Andy Connolly and UW scientists Bryce Kalmbach and Chris Suberlak on building the active optics pipeline for the Vera Rubin Observatory.

Published paper in February 2024, it can be found here.

Abstract

The Vera C. Rubin Observatory will, over a period of 10 yr, repeatedly survey the southern sky. To ensure that images generated by Rubin meet the quality requirements for precision science, the observatory will use an active-optics system (AOS) to correct for alignment and mirror surface perturbations introduced by gravity and temperature gradients in the optical system.

To accomplish this, Rubin will use out-of-focus images from sensors located at the edge of the focal plane to learn and correct for perturbations to the wave front. We have designed and integrated a deep-learning (DL) model for wave-front estimation into the AOS pipeline. In this paper, we compare the performance of this DL approach to Rubin’s baseline algorithm when applied to images from two different simulations of the Rubin optical system. We show the DL approach is faster and more accurate, achieving the atmospheric error floor both for high-quality images and low-quality images with heavy blending and vignetting. Compared to the baseline algorithm, the DL model is 40× faster, the median error 2× better under ideal conditions, 5× better in the presence of vignetting by the Rubin camera, and 14× better in the presence of blending in crowded fields. In addition, the DL model surpasses the required optical quality in simulations of the AOS closed loop.

This system promises to increase the survey area useful for precision science by up to 8%. We discuss how this system might be deployed when commissioning and operating Rubin.

2023 Buchalter Cosmology First Prize awarded to Dr. Kyle Boone and Dr. Matthew McQuinn

Congratulations!

The $10,000 First Prize was awarded to Dr. Kyle Boone (former DiRAC Fellow, presently at Google Inc.) and Dr. Matthew McQuinn (Professor of Astronomy at the University of Washington), for their work entitled “Solar System-scale interferometry on fast radio bursts could measure cosmic distances with sub-percent precision”.

Last year (in 2023), Kyle and Matt devised a new method for measuring cosmological distances to fast radio bursts using the differences in wavefront arrival times as measured by extremely long baseline interferometry. The technique requires spacecrafts floating at the opposing ends of the Solar System and thus years away. But someday, a system like they describe will yield unprecedentedly accurate, sub-percent, constraints on cosmological parameters and also a new, independent way, to measure the Hubble constant.

The Buchalter Cosmology Prize seeks to stimulate ground-breaking theoretical, observational, or experimental work in cosmology that has the potential to produce a breakthrough advance in our understanding. It was created to support the development of new theories, observations, or methods, that can help illuminate the puzzle of cosmic expansion from first principles.

More about the Buchalter Cosmology Prize here.

Citizen Scientists Uncover Hidden Secrets of the Solar System: “Active Asteroids” Project Reveals Dozens of Rare Celestial Bodies

A Treasure Trove of Discoveries Revealed in New Article by Zooniverse Project Active Asteroids

In an innovative exploration that intertwines the realms of astronomy and Citizen Science, a new publication unveils the first results of the Active Asteroids Citizen Science Program. Spearheaded by Colin Orion Chandler (DiRAC Institute, University of Washington) and a formidable team of researchers, this initiative has embarked on an audacious mission: to enlist the help of the public in uncovering the secrets of our solar system’s elusive active asteroids. These intriguing celestial bodies, akin to asteroids with comet-like tails or comae, have long captivated scientists and enthusiasts alike. Yet, their rarity and the challenge of identification have shrouded them in mystery.

Figure 1: The 16 active object discoveries made by the Active Asteroids program. Each panel shows an object at the center, with a tail or coma (dust cloud) emanating from that object. (Image Credit: Henry Hsieh)

Harnessing the power of NASA’s partnership and the online Citizen Science platform Zooniverse, the project has made significant strides since its launch in August 2021. With over 9,000 volunteers participating, the collective effort has scrutinized approximately 500,000 images from the vast archives of the Dark Energy Camera (DECam), an instrument on the Blanco 4-meter telescope atop Cerro Tololo, Chile. This massive undertaking has not only democratized scientific research in the study of active asteroids but has also led to the identification of previously unknown activity in 16 solar system bodies (Figure 1) — findings that are improving our understanding of the solar system. Furthermore, the program has unearthed activity in known objects during previous orbital epochs, offering new insights into their behavior and classification.

The success of the Active Asteroids Citizen Science Program exemplifies the transformative potential of Citizen Science in astronomical research. It highlights how the collective effort of volunteers, armed with curiosity and supported by cutting-edge technology, can uncover secrets of the cosmos. Notably, nine of the paper’s authors are themselves Citizen Scientsits from the Active Asteroids project. “For me, Active Asteroids present an opportunity to contribute to science through professional methods,” said Virgilio Gonano, a Citizen Scientist author from Udine, Italy. “I can interact directly with both professional and amateur astronomers. For an amateur astronomer like me, it’s a dream come true!

As the program continues to unveil new discoveries, it invites us all to ponder our place in the expanse of our own solar system and beyond. Anyone interested can participate today in the ongoing endeavor by visiting http://activeasteroids.net.

Colin Orion Chandler

Contact:

Colin Orion Chandler

LINCC Frameworks Project Scientist and Postdoctoral Scholar

DiRAC Institute and the University of Washington

coc123@uw.edu

1 206 543 2888

About the DiRAC Institute

The University of Washington’s Institute for Data-Intensive Research in Astrophysics and Cosmology (DiRAC) brings together the diversity of expertise — from astrophysics, data science, to software engineering — needed to build the world’s most advanced datasets and algorithms, and use them to explore and understand the universe. DiRAC scientists play a major role in the construction of Rubin Observatory and the development of next-generation software tools through the LINCC program. Learn more at https://dirac.astro.washington.edu/.

Annual Report 2023

The report covers DiRAC’s current impact, highlights in science and personnel, in-depth articles, a review on past and upcoming events, as well as recognizing and celebrating our community’s efforts. Explore the remarkable accomplishments at DiRAC throughout 2023.

2023 Annual Appeal

With another year of science behind us, it’s a pleasure to write to you today as the Director of the DiRAC Institute, University of Washington’s hub for research in data-intensive astrophysics and cosmology.

Founded just six years ago thanks to the generous initial support from the Charles and Lisa Simonyi Fund for Arts and Sciences, DiRAC has grown into a truly world-class research institute. In that time, our members co-authored over 500 papers garnering more than 13,000 citations, developed novel algorithms and software powering the next generation of astronomical experiments, all while training the next set of future leaders in astronomy and sharing the excitement of our research with the public.

Throughout 2023 we’ve continued to push towards our vision of a Universe understood through data-intensive discovery. Our team devised and leveraged the immense power of novel algorithms and large datasets to tackle some of the most pressing scientific challenges of our time. We’ve explored the Solar System, from discovering hundreds of distant small bodies in its farthest reaches to finding an elusive asteroid potentially hazardous to Earth. Our students sifted through time-domain data to discover rare stars, and identify strange X-ray sources. We looked at the impact of satellite constellations to Earth-based astronomy, analyzing their effect and ways to enable the co-existence of astronomy and technological progress in an increasingly connected world. And we continue to build and prepare for the science of the once-in-a-generation Rubin Observatory: our teams deployed the critical real-time data analysis pipelines, as well as the first version of novel big data analysis software and formats. I invite you to read more about these and other accomplishments in our Annual Report.

The support we receive from our wonderful community has always been a critical part of DiRAC’s success, and this year was no different. I’m happy to announce that, thanks to a generous donation from Lloyd and Janet Frink, our flagship DiRAC Postdoctoral Fellowship program will continue into 2024. And for the second year in a row, we’ve been able to award Summer Research Prizes, this time to five undergraduate students. This has been made possible by the generous support of David Brooks, Jeff Glickman, our Advisory Board members and numerous individuals. I wish to thank all of our supporters: our students and postdocs would not be able to explore the Universe without you – these accomplishments are yours as much as ours!

Looking ahead, 2024 promises to be incredibly exciting. After over two decades of developing and constructing the Rubin Observatory, we expect to obtain first observations near the end of next year. This observatory will be nothing short of revolutionary: from enabling us to search for new planets in our own Solar System to looking into the farthest reaches of the Universe and understanding the nature of Dark Energy and the Big Bang. A period of unprecedented excitement is before us.

Your gifts to DiRAC will enable our students and researchers to continue bringing these discoveries to the world in 2024. Join and support us on that journey, help us train the next generation of leaders in astronomy, and help make UW the center of the (scientific) Universe!

Sincerely,

Mario Juric

Director, DiRAC Institute

Letter From the Director

Welcome to the September edition of DiRAC’s newsletter!

It’s always a delight to be able to greet and welcome our students, researchers and supporters to the new academic year! For DiRAC, 2024 is shaping to be a big one: from welcoming new postdocs, students, and faculty, to starting to commission the Rubin Observatory in Chile.


This newsletter focuses on news and events that happened over the summer. We hosted the second cohort of Summer Prize recipients, UW astronomy undergraduates working with faculty on a variety of cutting edge projects. Our Rubin team vividly demonstrated the effectiveness of novel asteroid finding algorithms by discovering a new potentially hazardous asteroid previously missed by other surveys. And we were happy to be featured in UW Magazine, with a piece on Rubin accompanied by a beautiful photo of the observatory at night time.

Read more about these and other updates in the rest of this newsletter — not bad for a summer “break”!

Thank you,

Mario Juric
Director, DiRAC Institute
Professor, Department of Astronomy

Student Research Prize Program Successfully Completed

Thanks to the generous support of the DiRAC Advisory Board, and the local UW Astronomy community, the Student Research Prize Program was successfully wrapped up for 2023 this August!

Now in its second year, this prize supports undergraduate research in astronomy at the University of Washington, providing students a stipend to focus on their independent research projects under the supervision of UW faculty and scientists. Previous winners of this prize have presented at local and national research conferences, contributed to peer-reviewed publications, and continued on to graduate school. Our summer program has also been featured in the UW College of Arts and Sciences’ Newsletter.

David Brooks (left) and the 2023 Summer Prize recipients.

This year we are excited to award 5 summer prizes, including students across a wide range of astronomy and astrophysics research topics:

Thank you to the generous community that supports truly excellent student research at the University of Washington, especially our principle donors David Brooks and Jeff Glickman. You are helping the next generation of scholars to build the most advanced datasets, algorithms, and tools to explore and understand the universe!

New Algorithm Discovers ‘Potentially Hazardous’ Asteroid

Ari Heinze, Research Scientist, University of Washington, DiRAC Institute

The Vera Rubin Observatory, currently being completed amid the beautiful desolation of the Chilean Andes, is scheduled to begin the most ambitious survey yet of the night sky. Starting in 2025, Rubin will make precise measurements of an estimated forty billion stars and galaxies, most currently unknown. Over ten years of planned operations, Rubin will produce 60 petabytes of data — mapping more than half the sky at a level of detail previously achieved only over small regions.


Rubin is also intended to help protect the earth by discovering thousands of potentially hazardous asteroids too faint for smaller telescopes to detect. In order to survey the cosmos with maximal efficiency, Rubin will take only two images of each patch of sky every night — while currently operating asteroid surveys take four images. Four images are needed to make sure a candidate asteroid is actually real. With only two or three sightings, an asteroid candidate is too likely to be a coincidence of glints from stars or other ‘image junk’, rather than a real object.


Using new algorithms, though, Rubin will be able to combine data from multiple nights, identifying which candidate detections must be real because they line up along a consistent orbital trajectory from night to night. Rubin’s algorithm of choice is based on HelioLinC, invented in 2018 by Smithsonian senior astrophysicist Matt Holman. At the University of Washington, Siegfried Eggl (now a professor at the University of Illinois) and I (Ari Heinze) developed a new version called HelioLinc3D, which uses orbital physics to sort through millions of junk detections and find the real asteroids moving in a consistent way.


HelioLinc3D works great in simulations, but can it discover dangerous near-Earth objects (NEOs) in real life? The most definitive demonstration would be discovering a new NEO in real data from an existing survey — and John Tonry and Larry Denneau, who lead the Hawaii-based ATLAS survey, offered ATLAS data for a test.
To make an actual discovery, HelioLinc3D would have to find something the regular ATLAS software missed — and it doesn’t miss much. I searched archival ATLAS data with HelioLinc3D for weeks, but every NEO I found had been discovered long before. Finally, though, HelioLinc3D flagged the asteroid now designated 2022 SF289. ATLAS had detected this NEO on four different nights — but the object was so faint that it was sighted in only three images on each night — never the four detections required for a single-night discovery. Only a multi-night linking algorithm such as HelioLinc3D could combine the tenuous detections to prove the object was real: the very first NEO ever discovered with the new algorithm.

Like other surveys, ATLAS makes millions of candidate asteroid detections every night — thousands even in the small patch of sky shown here. The power of HelioLinc3D is its ability to handle the mathematical complexity of an astrophysical ‘connect the dots’ game in situations like this, where we’re pushing hard to attain sensitivity to the faintest objects and necessarily picking up a lot of ‘image junk’ in the process. In the plot above, four circles highlight the detections of 2022 SF289. In each circle is a tiny string of three overlapping dots — three real detections that look superficially identical to thousands of ‘junk’ detections in the same plot. The fact that measurements from all four nights lie precisely along a consistent orbit — far more precisely than could reasonably occur through random chance — is what proves that the discovery is real.


Only a sophisticated mathematical algorithm like HelioLinc3D could prove that those sets of barely-detectable glimmers all correspond to a single giant rock hurtling through space.
Once the ATLAS observations identified by HelioLinc3D constrained the orbit of 2022 SF289, we knew where to look for some additional detections. Joachim Moeyens, also a researcher at the University of Washington and the B612 Foundation’s Asteroid Institute, identified three images from Caltech’s Zwicky Transient Facility. The Minor Planet Center, the global clearinghouse to which all asteroid discoveries are submitted, identified additional detections from the Hawaii-based Pan-STARRS survey nearly two weeks after the first ATLAS measurements, and later still from the Catalina Sky Survey’s Mt. Lemmon telescope. These additional detections refine our knowledge of 2022 SF289’s orbit and further confirm its reality.

Discovery images from the ATLAS survey, with 2022 SF289 visible in the red boxes.ATLAS/University of Hawaii Institute for Astronomy/NASA


It turns out that 2022 SF289 isn’t just a near-Earth asteroid, it’s a particularly large one (estimated diameter 600 feet) that comes close enough to Earth to be officially designated as a potentially hazardous asteroid, one of about 2350 currently known. It comes within 190,000 miles — less than the distance to the moon — of Earth’s orbit, but 2022 SF289 won’t impact Earth in the foreseeable future. That’s a good thing, since it would explode violently enough to destroy multiple cities if it struck a populated area. The discovery of 2022 SF289 proves that HelioLinc3D can discover potentially hazardous asteroids — not just in simulations but in the real Universe. It’s the strongest possible demonstration that the Vera Rubin Observatory will fulfill its promise of discovering and tracking thousands of new potentially hazardous asteroids. 2022 SF289’s discovery represents another step forward in the ongoing, global effort to defend our planetary home — and even though we call it a potentially hazardous asteroid, the fact that we found it should make us all feel safer.

Written by Ari Heinze

Related Press:

James Urton, UW NewsNew algorithm ensnares its first ‘potentially hazardous’ asteroid

Robin George Andrews, New York Times – Killer Asteroid-Spotting Software Could Help Save the World