Stars and satellites as seen by the Dark Energy Camera

Huge Survey vs. Tiny Space Junk

As construction continues on the Vera Rubin Observatory, the skies above its mountaintop home grow more and more crowded following every rocket launch. Astronomers, conscious of the plans for mega-constellations of new satellites in the next few years, are rightfully worried: will these satellites and the tiny bits of debris that come with every deployment and collision affect the new telescope’s long-awaited, gigantic survey?

Read more about this research featuring DiRAC Fellow Meredith Rawls at AAS Nova!

Poster for Lucy in the Sky with Debris

Lucy in the Sky with Debris

Earlier this year, DiRAC Fellows Meredith Rawls, Dino Bektešević, and Colin Orion Chandler contributed interviews and satellite-streaked telescope images to an interdisciplinary research and visual art project on the visibility of orbital debris by artist Isabella Ong and curator Seet Yun Teng. The project included an exhibition during April 2024 in Singapore. Isabella originally reached out to Meredith and Dino due to their past work on Trailblazer, an initiative to collect images with known satellite streaks.

Group seeks to understand how a new type of satellite will impact Earth-based astronomy

A team of scientists has been tracking a bright object in the sky. But it’s not a star. It’s a new type of commercial satellite. Astronomers are trying to understand how its brightness and transmissions will interfere with Earth-based observations of the universe — and what can be done to minimize these effects as more of these satellites are launched.

In a paper published Oct. 2 in Nature, the team reports its first detailed assessment on how the satellite — BlueWalker 3 — could impact astronomy.

To study the cosmos, scientists manage an astronomical amount of data

In northern Chile in 2025, the Vera C. Rubin Observatory will begin gathering images of the night sky. “First light” (as astronomers call the moment a telescopic eye first opens) will inaugurate the Legacy Survey of Space and Time (LSST)—the most ambitious and comprehensive optical astronomy survey ever undertaken. The UW was one of four founders of the LSST project, which will capture panoramic images of the entire visible sky twice a week for 10 years, making 30 trillion observations of 30 billion astronomical sources and measuring the positions and properties of nearly 20 billion stars.

That’s a lot of data.

So much data, in fact, that it’ll take powerful new tools to manage and analyze it all. Enter DiRAC: the UW’s Institute for Data Intensive Research in Astrophysics & Cosmology.

DiRAC, based in the UW Department of Astronomy in the College of Arts & Sciences, was launched thanks to a gift from the Charles and Lisa Simonyi Fund for Arts and Sciences. The Simonyis anticipated that cameras and telescopes—like the Rubin’s cutting-edge Simonyi Survey Telescope—would soon become so powerful that we wouldn’t be able to keep up with the data they brought in. Since then, DiRAC’s growing team of UW scientists, software engineers, data science specialists and students have been crafting software to comb through vast amounts of information.

Once DiRAC begins interpreting the LSST data, scientists may have answers to questions that fundamentally reshape our understanding of our place in the universe: Is there a Planet Nine? When will the next “killer asteroid” come close to Earth? What are the origins of dark matter and the structure of the universe?

And perhaps the biggest question of all: What is out there that we aren’t even expecting to find?

New algorithm ensnares its first ‘potentially hazardous’ asteroid

An asteroid discovery algorithm — designed to uncover near-Earth asteroids for the
Vera C. Rubin Observatory’s upcoming 10-year survey of the night sky — has identified
its first “potentially hazardous” asteroid, a term for space rocks in Earth’s vicinity that
scientists like to keep an eye on.

The roughly 600-foot-long asteroid, designated 2022
SF289, was discovered during a test drive of the algorithm with the ATLAS survey in
Hawaii. Finding 2022 SF289, which poses no risk to Earth for the foreseeable future,
confirms that the next-generation algorithm, known as HelioLinc3D, can identify near-
Earth asteroids with fewer and more dispersed observations than required by today’s

Read full article here.

Secrets of the Stars

How UW astronomers, the world’s largest telescope and a revolutionary survey of space will upend what we thought we knew about the universe. Full article is featured on the UW Homepage here.

A green comet is passing by Earth. Here’s how to see it.

“The Zwicky Transient Facility, which found the new green comet, provides a preview of what to expect from the Vera C. Rubin Observatory, a gigantic facility currently under construction in Chile. Once operational in 2024, it will be the biggest survey telescope ever built, opening up a whole new era of cosmic understanding. “